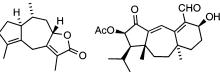


Tetrahedron Letters 43 (2002) 1939-1941

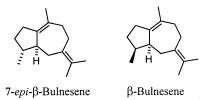
TETRAHEDRON LETTERS


Facile approach to the bicyclo[5.3.0]decane ring system; efficient synthesis of (\pm) -7-*epi*- β -bulnesene

Jalluri S. Ravi Kumar, Michael F. O'Sullivan, Sarah E. Reisman, Catherine A. Hulford and Timo V. Ovaska*

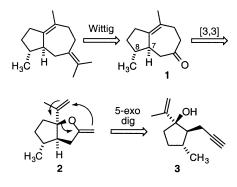
Department of Chemistry, Connecticut College, 270 Mohegan Avenue, New London, CT 06320, USA Received 2 January 2002; accepted 17 January 2002

Abstract—An efficient strategy for the rapid construction of the guiane bicyclo[5.3.0]decane ring system from appropriately substituted 4-alkyn-1-ols has been developed. This methodology relies on a MeLi-catalyzed tandem 5-*exo*-dig cyclization/Claisen rearrangement sequence as the key ring forming step. © 2002 Elsevier Science Ltd. All rights reserved.


The bicyclo[5.3.0]decane ring system is prevalent in nature and has been identified as the key structural unit in a number of biologically active compounds.¹ Among them are the guianes and the tricyclic guanacastenes as well as the guaianolide sesquiterpenes, characterized by a γ -lactone ring fused to the 5–7 core. Although many of these interesting natural products have been isolated and synthesized over the past few decades,² several novel biologically active compounds incorporating the bicyclo[5.3.0] structure have been discovered only recently. Representative examples of these include the americanolides,³ some of which exhibit activity against the human colon cancer cell line, and the unique diterpene guanacastepene which was found to possess novel and potent antibacterial properties.⁴

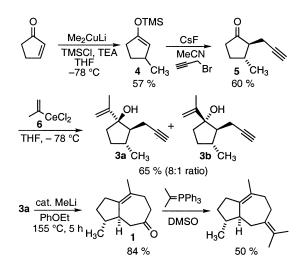
Americanolide D

Guanacastepene


As part of our ongoing investigation probing the synthetic utility of the tandem anionic cyclization/Claisen rearrangement process⁵ for the efficient synthesis of various cycloheptane-containing polycyclic natural products,⁶⁻⁸ we have now applied this strategy to the rapid construction of (\pm) -7-*epi*- β -bulnesene. This compound has been previously synthesized in 13 steps by Negishi et al.^{9,10} in 11 steps by Sammes et al.¹¹ and in 10 steps by Oppolzer et al.¹² Negishi employed Zr-promoted enyne bicyclization followed by transition metal or radical catalyzed cyclization of alkenyl iodides as the key steps for his synthesis,⁹ and Sammes utilized intramolecular 1,3-dipolar cycloaddition of a 2-substituted 3-oxidopyrylium as the primary ring forming strategy in his approach. Oppolzer's synthesis relies on an intramolecular [2+2] cycloaddition of an appropriately substituted enol acetate to afford a tricyclo[5.3.0.0^{1.5}]decane intermediate, which subsequently undergoes base-induced fragmentation to produce the desired 5-7 ring system.¹²

We envisioned that the bulnesene framework could be constructed from an appropriately substituted acetylenic alcohol using a straightforward one-pot process according to the retrosynthetic analysis shown in Scheme 1. This sequence involves a base-catalyzed 5exo-dig cyclization of alkynol 3 to generate the 2-methvlene tetrahydrofuran intermediate 2, which then undergoes a spontaneous Claisen rearrangement under thermal conditions to provide the key bicyclic ketone 1.9,11,12 Installation of the exocyclic isopropylidene moiety on the B ring to complete the target 7-epi-β-bulnesene is achieved through standard Wittig chemistry.

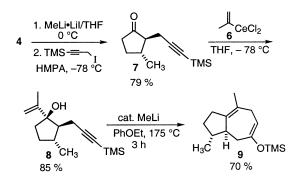
^{*} Corresponding author. Tel.: 860-439-2488; fax: 860-439-2477; e-mail: tvova@conncoll.edu


^{0040-4039/02/\$ -} see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00171-5

Scheme 1. Retrosynthetic analysis for (\pm) -7-epi- β -bulnesene.

The requisite alkynol **3** was synthesized in three steps from commercially available 2-cyclopenten-1-one as depicted in Scheme 2. Thus, conjugate addition using Me₂CuLi in the presence of chlorotrimethylsilane afforded the known¹³ silvl enol ether 4 in 57% yield. On exposure to cesium fluoride and propargyl bromide in anhydrous acetonitrile at room temperature,¹⁴ 4 was converted to trans-2-(2-propynyl)-3-methylcyclopentanone 5 in 60% isolated yield after column chromatography. The balance of the product mixture consisted mainly of 3-methylcyclopentanone, undoubtedly derived from premature protonation of the intermediate enolate anion. The maximum yield of the desired ketone product (60%) was obtained through the use of a syringe pump, allowing slow addition of 4 to the reaction mixture. The alkylation itself was approximately 94% diastereoselective in favor of the trans isomer as judged by GC analysis.

Reaction of ketone 5 with vinyl cerium 6, generated in situ from the corresponding vinyllithium species, produced the $1R^*, 2S^*$ alcohol 3a and the undesired $1S^*, 2S^*$ diastereomer 3b (8:1 ratio) in a combined yield of 65%. At this point, the stage was set for the key intramolecular cyclization/Claisen rearrangement sequence which proceeded without incident on heating in the presence of catalytic MeLi (5–10 mol%) to provide the desired bicyclic ketone in 84% isolated


Scheme 2. Synthesis of (\pm) -7-*epi*- β -bulnesene.

yield.¹⁵ The 5-step synthesis of (\pm) -7-*epi*- β -bulnesene¹⁶ was completed by reacting ketone 1 with isopropylidenetriphenylphosphorane in DMSO according to the procedure of Oppolzer et al.¹²

It should be emphasized that, unlike other reported syntheses of the bulnesene ring system in which the crucial ring forming steps result in the formation of a mixture of stereoisomers,^{9,11,12} the tandem sequence described here is completely stereoselective. Thus, the observed $7S^*, 8R^*$ stereochemistry in 1 is a consequence of the *trans* relationship between the methyl and the propargyl substituents in **5**.

The silvl enol ether **4** was also readily alkylated^{2b} with 3-iodo-1-trimethylsilyl-1-propyne to afford the corresponding trimethylsilyl substituted ketone 7 and subsequently converted to alcohol 8 in an excellent yield as shown in Scheme 3. We have previously reported⁷ that, in cases where the triple bond bears a silicon-containing substituent (TMS or TBDMS) in the 4-alkyn-1-ol system. the cyclization/sigmatropic rearrangement sequence is accompanied by the Brook rearrangement,¹⁷ resulting in regiospecific installation of a silvl enol ether functionality on the seven-membered ring. As expected, the trimethylsilyl substituted alcohol 8 exhibited analogous behavior on treatment of with catalytic MeLi (10 mol%) in refluxing phenetole, affording the silvl enol ether 9 as the ultimate reaction product. Although readily hydrolyzed with aqueous acid, 9 can be isolated by careful flash chromatography on florisil. The formation of this product is significant in that it provides future opportunities for regioselective functionalization and further elaboration of bicyclic 5-7 system as a potential route to more complex cycloheptanoid ring systems, such as the guainolide natural products.

In conclusion, we have achieved a rapid, 5-step synthesis of (\pm) -7-*epi*- β -bulnesene starting from commercially available 2-cyclopenten-1-one using a powerful one-pot 5-*exo*-dig cyclization/Claisen rearrangement process as the key ring forming operation. We are currently exploring the possibility of employing this strategy as a route to several tricyclic guainolide natural products through appropriate modification of starting materials and further elaboration of the 5–7 bicyclic core.

Scheme 3. Synthesis of bicyclic silvl enol ether 9.

Acknowledgements

We are grateful to the National Institutes of Health (R15 GM60972-01) for financial support of this work. M.F.O. and C.A.H. acknowledge Boehringer-Ingelheim Pharmaceuticals, Inc. for summer undergraduate fellowships. S.E.R. acknowledges Pfizer, Inc. for a summer undergraduate fellowship (S.U.R.F. program).

References

- 1. Fraga, B. M. Nat. Prod. Rep. 1992, 9, 217-241.
- 2. For representative synthetic approaches toward to the bicyclo[5.3.0] ring system, see: (a) Dudley, G. B.; Tan, D. S.; Kim, G.; Tanski, J. M.; Danishefsky, S. J. Tetrahedron Lett. 2001, 42, 6789-6791; (b) Dudley, G. B.; Danishefsky, S. J. Org. Lett. 2001, 3, 2933-2402; (c) Snider, B. B.; Hawryluk, N. A. Org. Lett. 2001, 3, 569-572; (d) Deak, H. L.; Stokes, S. S.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 5152-5153; (e) Lange, G. L.; Gottardo, C. Tetrahedron Lett. 1994, 35, 8513-8516; (f) Lange, G. L.; Gottardo, C.; Merica, A. J. Org. Chem. 1999, 64, 6738-6744; (g) Davies, H. M. L.; Doen, B. D. Tetrahedron Lett. 1996, 37, 3967-3969; (h) Wender, P. A.; Fuji, M.; Husfield, C. O.; Love, J. A. Org. Lett. 1999, 1, 137-139; (i) Lansbury, P. T.; Serelis, A. K. Tetrahedron Lett. 1978, 1909–1912; (j) Posner, G. H.; Babiak, K. A.; Loomis, G. L.; Frazee, W. J.; Mittal, R. D.; Karle, I. L. J. Am. Chem. Soc. 1980, 102, 7498-7505; (k) Carroll, G. L.; Allan, A. K.; Schwaebe, M. K.; Little, R. D. Org. Lett. 2000, 2, 2531-2534.
- (a) Rodriguez, A. D.; Boulanger, A.; Martinez, J. R.; Huang, S. D. J. Nat. Prod. 1998, 61, 451–455; (b) Rodriguez, A. D.; Boulanger, A. J. Nat. Prod. 1997, 60, 207–211.
- Brady, S. F.; Singh, M. P.; Janso, J. E.; Clardy, J. J. Am. Chem. Soc. 2000, 122, 2116–2117.
- 5. For an early report on this sequence, see: Marvell, E. N.; Titterington, D. *Tetrahedron Lett.* **1980**, 2123–2124.
- Ovaska, T. V.; Roark, J. L.; Shoemaker, C. M.; Bordner, J. *Tetrahedron Lett.* **1998**, *39*, 5705–5708.
- 7. Ovaska, T. V.; Roses, J. B. Org. Lett. 2000, 2, 2361-2364.

- Ovaska, T. V.; Reisman, S. E.; Flynn, M. A. Org. Lett. 2001, 3, 115–117.
- Negishi, E.; Ma, S.; Sugihara, T.; Noda, Y. J. Org. Chem. 1997, 62, 1922–1923.
- Agnel, G.; Owczarczyk, Z.; Negishi, E. *Tetrahedron Lett.* 1992, 33, 1543–1546.
- Bromidge, S. M.; Sammes, P. G.; Street, L. J. J. Chem. Soc., Perkin Trans. 1 1985, 1725–1730.
- 12. Oppolzer, W.; Wylie, R. D. Helv. Chim. Acta 1980, 63, 1198–1203.
- Dieter, R. K.; Dieter, J. W. J. Chem. Soc., Chem. Commun. 1983, 23, 1378–1380.
- For a general procedure, see: Kita, Y.; Segawa, J.; Haruta, J.; Yasuda, H.; Tamura, Y. J. Chem. Soc., Perkin Trans. 1 1982, 1099–1104.
- 15. Experimental procedure for the preparation of 1: To a base-washed, flame-dried 10 mL round-bottomed flask, equipped with a reflux condenser were added 0.470 g (2.64 mmol) of 3a and 1.5 mL of anhydrous phenetole. The solution was then heated under argon to 155°C (bath temperature), followed by dropwise addition of 1.30 mL of 0.203 M MeLi in phenetole (0.264 mmol, 10 mol%). The resulting solution was heated at 155°C for an additional 5 h. After cooling to room temperature, the mixture was chromatographed on silica gel, first eluting with 1% EtOAc/hexanes to remove phenetole then with 4% Et₂O/20% DCM/pentane to give 0.396 g of the desired product (84%) as a clear oil after solvent removal under vacuum. ¹H NMR (250 MHz, CDCl₃) δ 2.93-2.83 (m, 1H), 2.59 (d, J = 14.4 Hz, 1H), 2.41–2.29 (m, 7H), 1.89– 1.79 (m, 1H), 1.63 (s, 3H), 1.58-1.42 (m, 1H), 1.28-1.10 (m, 1H), 0.99 (d, J = 6.41 Hz, 3H) ppm. ¹³C NMR (62 MHz, CDCl₃) δ 213.6, 140.3, 125.9, 47.4, 46.3, 42.6, 41.9, 33.7, 31.7, 31.2, 21.5, 18.1 ppm.
- 16. ¹H NMR (400 MHz, CDCl₃) δ 2.67 (d, J=14.5 Hz, 1H), 2.54–2.46 (m, 1H), 2.34–2.20 (m, 6H), 1.92–1.83 (m, 1H), 1.82–1.75 (m, 1H), 1.67 (s, 3H), 1.65 (s, 3H), 1.58 (s, 3H), 1.54–1.44 (m, 1H), 1.40–1.36 (m, 1H), 1.18–1.05 (m, 1H), 1.03 (d, J=6.64 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 133.2, 126.4, 122.0, 49.3, 42.7, 37.1, 36.7, 33.9, 31.5, 29.4, 21.9, 20.2, 20.1, 18.6 ppm (lit.¹² 140.2, 133.2, 126.2, 121.7, 49.6, 42.8, 37.1, 36.8, 33.9, 31.5, 29.6, 21.9, 20.1, 18.7 ppm).
- 17. Brook, A. G. Acc. Chem. Res. 1974, 7, 77-84.